Comprehensive Survey of the OCT-Based Disorders Diagnosis: From Feature Extraction Methods to Robust Security Frameworks
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Optical coherence tomography (OCT) is a leading imaging technique for diagnosing retinal disorders such as age-related macular degeneration and diabetic retinopathy. Its ability to detect structural changes, especially in the optic nerve head, has made it vital for early diagnosis and monitoring. This paper surveys techniques for ocular disease prediction using OCT, focusing on both hand-crafted and deep learning-based feature extractors. While the field has seen rapid growth, a detailed comparative analysis of these methods has been lacking. We address this by reviewing research from the past 20 years, evaluating methods based on accuracy, sensitivity, specificity, and computational cost. Key diseases examined include glaucoma, diabetic retinopathy, cataracts, amblyopia, and macular degeneration. We also assess public OCT datasets widely used in model development. A unique contribution of this paper is the exploration of adversarial attacks targeting OCT-based diagnostic systems and the vulnerabilities of different feature extraction techniques. We propose a practical, robust defense strategy that integrates with existing models and outperforms current solutions. Our findings emphasize the value of combining classical and deep learning methods with strong defenses to enhance the security and reliability of OCT-based diagnostics, and we offer guidance for future research and clinical integration.