Climate-Resilient Crops: Integrating AI, Multi-Omics, and Advanced Phenotyping to Address Global Agricultural and Societal Challenges

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Drought and excess ambient temperature intensify abiotic and biotic stresses on agriculture, threatening food security and economic stability. The development of climate-resilient crops is crucial for sustainable, efficient farming. This review highlights the role of multi-omics encompassing genomics, transcriptomics, proteomics, metabolomics, and epigenomics in identifying genetic pathways for stress resilience. Advanced phenomics, using drones and hyperspectral imaging, can accelerate breeding programs by enabling high-throughput trait monitoring. Artificial intelligence (AI) and machine learning (ML) enhance these efforts by analyzing large-scale omics and phenotypic data, predicting stress tolerance traits, and optimizing breeding strategies. Additionally, plant-associated microbiomes contribute to stress tolerance and soil health through bioinoculants and synthetic microbial communities. Beyond agriculture, these advancements have broad societal, economic, and educational impacts. Climate-resilient crops can enhance food security, reduce hunger, and support vulnerable regions. AI-driven tools and precision agriculture empower farmers, improving livelihoods and equitable technology access. Educating teachers, students, and future generations fosters awareness and equips them to address climate challenges. Economically, these innovations reduce financial risks, stabilize markets, and promote long-term agricultural sustainability. These cutting-edge approaches can transform agriculture by integrating AI, multi-omics, and advanced phenotyping, ensuring a resilient and sustainable global food system amid climate change.

Article activity feed