Mid- to Long-Term Distribution System Planning Using Investment-Based Modeling
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study presents a practical and scalable framework for mid- to long-term distribution network planning that reflects real-world infrastructure constraints and investment requirements. While traditional methods often rely on simplified network models or reactive reinforcement strategies, the proposed approach introduces an investment-oriented planning model that explicitly incorporates physical elements such as duct capacity, pole availability, and installation feasibility. A linear programming (LP) formulation is adopted to determine the optimal routing and sizing of new facilities under technical constraints including voltage regulation, power balance, and substation capacity limits. To validate the model’s effectiveness, actual infrastructure and load data were used. Results show that the model can derive cost-efficient expansion strategies over a five-year horizon by prioritizing existing infrastructure use and flexibly adapting to spatial limitations. The proposed approach enables utility planners to make realistic, data-driven decisions and supports diverse scenario analyses through a modular structure. By embedding investment logic directly into the network model, this framework bridges the gap between high-level planning strategies and the engineering realities of distribution system expansion.