Photodegradation of Pyridine in a Fluidized Bed Photocatalytic Reactor Using Pt-ZnO Supported on Al2O3 as a Catalyst

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pyridine is a recalcitrant organic compound present in industrial wastewater that causes severe effects on the environment and the health of living beings, as it is considered a toxic, mutagenic, teratogenic, and carcinogenic agent. Therefore, this research explored the efficacy of a zinc oxide catalyst, doped with platinum nanoparticles and supported alumina through the precipitation method, for the photocatalytic degradation of pyridine using a fluidized bed reactor. A Box–Behnken experimental design was used to analyze the effect of the pH (4–10), the pyridine concentration (20–300 ppm), and the amount of catalyst (20–100 g). The X-ray diffraction (XRD) characterization results confirmed the hexagonal structure of the zinc oxide and the successful incorporation of platinum. Scanning electron microscopy (SEM) revealed a nano-bar morphology upon catalyst doping, favoring the photocatalytic activity. Pyridine removal of 57.7% was achieved under the following conditions: a pH of 4, 160 ppm of pyridine, and 100 g of catalyst. The process followed a pseudo-first-order model, obtaining the reaction constant k1 = 1.943 × 10−3 min−1 and the adsorption constant k2 = 1.527 × 10−3 L/mg. The results showed high efficiency and stability of the catalyst in the fluidized bed reactor for pyridine degradation, especially under acidic conditions, representing a promising technological alternative for treating industrial wastewater contaminated with N-heterocycles such as pyridine.

Article activity feed