Modeling and Analysis of Surface Motion Characteristics for a Dual-Propulsion Amphibious Spherical Robot

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study introduces an amphibious spherical robot equipped with a dual-propulsion system (ASR-DPS) and investigates its water-surface motion characteristics. Due to its distinctive spherical geometry, the robot exhibits markedly different hydrodynamic behavior compared to conventional vessels. A comparative analysis of the frontal wetted area is performed, followed by computational fluid dynamics (CFD) simulations to assess water-surface performance. The results indicate that the hemispherical bow increases hydrodynamic resistance and generates large-scale vortex structures as a consequence of intensified flow separation. Although the resistance is higher than that of traditional hulls, the robot’s greater draft and dual-propulsion configuration enhance stability and maneuverability during surface operations. To validate real-world performance, standard maneuvering tests, including circle and zig-zag maneuvers, are conducted to evaluate the effectiveness of the propeller-based propulsion system. The robot achieves a maximum surface speed of 1.2 m/s and a zero turning radius, with a peak yaw rate of 0.54 rad/s under differential thrust. Additionally, experiments on the pendulum-based propulsion system demonstrate a maximum speed of 0.239 m/s with significantly lower energy consumption (220.6 Wh at 60% throttle). A four-degree-of-freedom kinematic and dynamic model is formulated to describe the water-surface motion. To address model uncertainties and external disturbances, two control strategies are proposed: one employing model simplification and the other adaptive control. Simulation results confirm that the adaptive sliding mode controller provides precise surge speed tracking and smooth yaw regulation with near-zero steady-state error, exhibiting superior robustness and reduced chattering compared to the baseline controller.

Article activity feed