Identity-Based Efficient Secure Data Communication Protocol for Hierarchical Sensor Groups in Smart Grid
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
With the rapid evolution of smart grids, secure and efficient data communication among hierarchical sensor devices has become critical to ensure privacy and system integrity. However, existing protocols often fail to balance security strength and resource constraints of terminal sensors. In this paper, we propose a novel identity-based secure data communication protocol tailored for hierarchical sensor groups in smart grid environments. The protocol integrates symmetric and asymmetric encryption to enable secure and efficient data sharing. To reduce computational overhead, a Bloom filter is employed for lightweight identity encoding, and a cloud-assisted pre-authentication mechanism is introduced to enhance access efficiency. Furthermore, we design a dynamic group key update scheme with minimal operations to maintain forward and backward security in evolving sensor networks. Security analysis proves that the protocol is resistant to replay and impersonation attacks, while experimental results demonstrate significant improvements in computational and communication efficiency compared to state-of-the-art methods—achieving reductions of 73.94% in authentication computation cost, 37.77% in encryption, and 55.75% in decryption, along with a 79.98% decrease in communication overhead during authentication.