The Adaptive Ecosystem of MaaS-Driven Cookie Theft: Dynamics, Anticipatory Analysis Concepts, and Proactive Defenses

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The industrialization of cybercrime, principally through Malware-as-a-Service (MaaS), has elevated HTTP cookie theft to a critical cybersecurity challenge, enabling attackers to bypass multi-factor authentication and perpetrate large-scale account takeovers. Employing a Holistic and Integrative Review methodology, this paper dissects the intricate, adaptive ecosystem of MaaS-driven cookie theft. We systematically characterize the co-evolving arms race between offensive and defensive strategies (2020–2025), revealing a critical strategic asymmetry where attackers optimize for speed and low cost, while effective defenses demand significant resources. To shift security from a reactive to an anticipatory posture, a multi-dimensional predictive framework is not only proposed but is also detailed as a formalized, testable algorithm, integrating technical, economic, and behavioral indicators to forecast emerging threat trajectories. Our findings conclude that long-term security hinges on disrupting the underlying cybercriminal economic model; we therefore reframe proactive countermeasures like Zero-Trust principles and ephemeral tokens as economic weapons designed to devalue the stolen asset. Finally, the paper provides a prioritized, multi-year research roadmap and a practical decision-tree framework to guide the implementation of these advanced, collaborative cybersecurity strategies to counter this pervasive and evolving threat.

Article activity feed