Optimizing LoRaWAN Performance Through Learning Automata-Based Channel Selection

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The rising demand for long-range, low-power wireless communication in applications such as monitoring, smart metering, and wide-area sensor networks has emphasized the critical need for efficient spectrum utilization in LoRaWAN (Long Range Wide Area Network). In response to this challenge, this paper proposes a novel channel selection framework based on Hierarchical Discrete Pursuit Learning Automata (HDPA), aimed at enhancing the adaptability and reliability of LoRaWAN operations in dynamic and interference-prone environments. HDPA leverages a tree-structure reinforcement learning model to monitor and respond to transmission success in real-time, dynamically updating channel probabilities based on environmental feedback. Simulation results conducted in MATLAB R2023b demonstrate that HDPA significantly outperforms conventional algorithms such as Hierarchical Continuous Pursuit Automata (HCPA) in terms of convergence speed, selection accuracy, and throughput performance. Specifically, HDPA achieved 98.78% accuracy with a mean convergence of 6279 iterations, compared to HCPA’s 93.89% accuracy and 6778 iterations in an eight-channel setup. Unlike the Tug-of-War-based Multi-Armed Bandit strategy, which emphasizes fairness in real-world heterogeneous networks, HDPA offers a computationally lightweight and highly adaptive solution tailored to LoRaWAN’s stochastic channel dynamics. These results position HDPA as a promising framework for improving reliability and spectrum utilization in future IoT deployments.

Article activity feed