The Application of KNN-Optimized Hybrid Models in Landslide Displacement Prediction
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Early warning systems depend heavily on the accuracy of landslide displacement forecasts. This study focuses on the Bazimen landslide located in the Three Gorges Reservoir region and proposes a hybrid prediction approach combining support vector regression (SVR) and long short-term memory (LSTM) networks. These models are optimized via the K-Nearest Neighbor (KNN) algorithm. Initially, cumulative displacement data were separated into trend and cyclic elements using a smoothing approach. SVR and LSTM were then used to predict the components, and KNN was introduced to optimize input factors and classify the results, improving accuracy. The final KNN-optimized SVR-LSTM model effectively integrates static and dynamic features, addressing limitations of traditional models. The results show that LSTM performs better than SVR, with an RMSE and MAPE of 24.73 mm and 1.87% at monitoring point ZG111, compared to 30.71 mm and 2.15% for SVR. The sequential hybrid model based on KNN-optimized SVR and LSTM achieved the best performance, with an RMSE and MAPE of 23.11 mm and 1.68%, respectively. This integrated model, which combines multiple algorithms, offers improved prediction of landslide displacement and practical value for disaster forecasting in the Three Gorges area.