Hybrid of VGG-16 and FTVT-b16 Models to Enhance Brain Tumors Classification Using MRI Images
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background: The accurate classification of brain tumors from magnetic resonance imaging (MRI) scans is pivotal for timely clinical intervention, yet remains challenged by tumor heterogeneity, morphological variability, and imaging artifacts. Methods: This paper presents a novel hybrid approach for improved brain tumor classification and proposes a novel hybrid deep learning framework that amalgamates the hierarchical feature extraction capabilities of VGG-16, a convolutional neural network (CNN), with the global contextual modeling of FTVT-b16, a fine-tuned vision transformer (ViT), to advance the precision of brain tumor classification. To evaluate the recommended method’s efficacy, two widely known MRI datasets were utilized in the experiments. The first dataset consisted of 7.023 MRI scans categorized into four classes gliomas, meningiomas, pituitary tumors, and no tumor. The second dataset was obtained from Kaggle, which consisted of 3000 scans categorized into two classes, consisting of healthy brains and brain tumors. Results: The proposed framework addresses critical limitations of conventional CNNs (local receptive fields) and pure ViTs (data inefficiency), offering a robust, interpretable solution aligned with clinical workflows. These findings underscore the transformative potential of hybrid architectures in neuro-oncology, paving the way for AI-assisted precision diagnostics. The proposed framework was run on these two different datasets and demonstrated outstanding performance, with accuracy of 99.46% and 99.90%, respectively. Conclusions: Future work will focus on multi-institutional validation and computational optimization to ensure scalability in diverse clinical settings.