Bridging the Construction Productivity Gap—A Hierarchical Framework for the Age of Automation, Robotics, and AI

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The construction sector, facing a persistent productivity gap compared to other industries, is hindered by fragmented value streams, inconsistent performance metrics, and the limited scalability of process improvements. We introduce a pioneering, four-tiered hierarchical productivity framework to respond to these challenges. This innovative approach integrates operational, tactical, strategic, and normative layers. At its core, the framework applies standardised, repeatable process steps—mapped using Value Stream Mapping (VSM)—to capture key indicators such as input efficiency, output effectiveness, and First-Time Quality (FTQ). These are then aggregated through takt time compliance, schedule reliability, and workload balance to evaluate trade synchronisation and flow stability. Higher-level metrics—flow efficiency, multi-resource utilisation, and ESG-linked performance—are integrated into an Overall Productivity Index (OPI). Building on a modular production model, the proposed framework supports real-time sensing, AI-driven monitoring, and intelligent process control, as demonstrated through an empirical case study of continuous process monitoring for Kelly drilling operations. This validation illustrates how sensor-equipped machinery and machine learning algorithms can automate data capture, map observed activities to standardised process steps, and detect productivity deviations in situ. This paper contributes to a multi-scalar measurement architecture that links micro-level execution with macro-level decision-making. It provides a foundation for real-time monitoring, performance-based coordination, and data-driven innovation. The framework is applicable across modular construction, digital twins, and platform-based delivery models, offering benefits beyond specialised foundation work to all construction trades. Grounded in over a century of productivity research, the approach demonstrates how emerging technologies can deliver measurable and scalable improvements. Framing productivity as an integrative, actionable metric enables sector-wide performance gains. The framework supports construction firms, technology providers, and policymakers in advancing robust, outcome-oriented innovation strategies.

Article activity feed