Development of an Automated Crack Detection System for Port Quay Walls Using a Small General-Purpose Drone and Orthophotos

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Aging port infrastructure demands frequent and reliable inspections, yet the existing automated systems often require expensive industrial drones, posing significant adoption barriers for local governments with limited resources. To address this challenge, this study develops a low-cost, automated crack detection system for port quay walls utilizing orthophotos generated from a small general-purpose drone. The system employs the YOLOR (You Only Learn One Representation) object detection algorithm, enhanced by two novel image processing techniques—overlapping tiling and pseudo-altitude slicing—to overcome the resolution limitations of low-cost cameras. While official guidelines for port facilities designate 3 mm as an inspection threshold, our system is specifically designed to achieve a higher-resolution detection capability for cracks as narrow as 1 mm. This approach ensures reliable detection with a sufficient safety margin and enables the proactive monitoring of crack progression for preventive maintenance. The effectiveness of the proposed image processing techniques was validated, with an F1 score-based analysis revealing key trade-offs between maximizing detection recall and achieving a balanced performance depending on the chosen simulated altitude. Furthermore, evaluation using real-world inspection data demonstrated that the proposed system achieves a detection performance comparable to that of a well-established commercial system, confirming its practical applicability. Crucially, by mapping the detected cracks to real-world coordinates on georeferenced orthophotos, the system provides a foundation for advanced, data-driven asset management, allowing for the quantitative tracking of deterioration over time. These results confirm that the proposed workflow is a practical and sustainable solution for infrastructure monitoring.

Article activity feed