A Wind Turbines Dataset for South Africa: OpenStreetMap Data, Deep Learning Based Geo-Coordinate Correction and Capacity Analysis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Accurate and detailed spatial data on wind energy infrastructure is essential for renewable energy planning, grid integration, and system analysis. However, publicly available datasets often suffer from limited spatial accuracy, missing attributes, and inconsistent metadata. To address these challenges, this study presents a harmonized and spatially refined dataset of wind turbines in South Africa, combining OpenStreetMap (OSM) data with high-resolution satellite imagery, deep learning-based coordinate correction, and manual curation. The dataset includes 1,487 turbines across 42 wind farms, representing over 3.9 GW of installed capacity as of 2025. The Geo-Coordinates were validated and corrected using a RetinaNet-based object detection model applied to both Google and Bing satellite imagery. Instead of relying solely on spatial precision, the curation process emphasized attribute completeness and consistency. Through systematic verification and cross-referencing with multiple public sources, the final dataset achieves a high level of attribute completeness and internal consistency across all turbines, including turbine type, rated capacity, and commissioning year. The resulting dataset is the most accurate and comprehensive publicly available dataset on wind turbines in South Africa to date. It provides a robust foundation for spatial analysis, energy modeling, and policy assessment related to wind energy development. The dataset is publicly available for download and can be explored interactively online .