Ionospheric TEC and ROT Analysis with Signal Combinations of QZSS Satellites in the Korean Peninsula

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study investigates the performance of three different signal combinations (L1-L2, L1-L5, and L2-L5) for estimating ionospheric total electron content (TEC) and the rate of TEC (ROT) using Quasi-Zenith Satellite System (QZSS) observations over the Korean Peninsula. GNSS data collected from nine stations across the Korean Peninsula were analyzed for the period from Day of Year (DOY) 1 to 182 in 2024. Differential Code Bias (DCB) was estimated for QZSS satellites, showing high temporal stability with daily variations within ±0.3 ns. The TEC values derived from three different signal combinations were compared with the CODE Global Ionospheric Map (GIM). Compared to other combinations, the L1-L5 pair shows the closest agreement with the CODE GIM, yielding a mean bias of +0.25 TEC units (TECU) with a root mean square (RMS) of 3.59 TECU. In addition, the ROT analysis over the consecutive six days revealed that the L1-L5 combination consistently exhibited the lowest RMS values of about 0.027 TECU compared to other signal pairs. As a result, we suggest that the L1-L5 combination can provide better performance for QZSS-based ionospheric monitoring and TEC studies.

Article activity feed