Intelligent Mobile-Assisted Language Learning: A Deep Learning Approach for Pronunciation Analysis and Personalized Feedback

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper introduces an innovative mobile-assisted language-learning (MALL) system that harnesses deep learning technology to analyze pronunciation patterns and deliver real-time, personalized feedback. Drawing inspiration from how the human brain processes speech through neural pathways, our system analyzes multiple speech features using spectrograms, mel-frequency cepstral coefficients (MFCCs), and formant frequencies in a manner that mirrors the auditory cortex’s interpretation of sound. The core of our approach utilizes a convolutional neural network (CNN) to classify pronunciation patterns from user-recorded speech. To enhance the assessment accuracy and provide nuanced feedback, we integrated a fuzzy inference system (FIS) that helps learners identify and correct specific pronunciation errors. The experimental results demonstrate that our multi-feature model achieved 82.41% to 90.52% accuracies in accent classification across diverse linguistic contexts. The user testing revealed statistically significant improvements in pronunciation skills, where learners showed a 5–20% enhancement in accuracy after using the system. The proposed MALL system offers a portable, accessible solution for language learners while establishing a foundation for future research in multilingual functionality and mobile platform optimization. By combining advanced speech analysis with intuitive feedback mechanisms, this system addresses a critical challenge in language acquisition and promotes more effective self-directed learning.

Article activity feed