Hybrid Transform-Based Feature Extraction for Skin Lesion Classification Using RGB and Grayscale Analysis

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Automated skin lesion classification using machine learning techniques is crucial for early and accurate skin cancer detection. This study proposes a hybrid method combining the Hermite, Radial Fourier–Mellin, and Hilbert transform to extract comprehensive features from skin lesion images. By separating the images into red, green, and blue (RGB) channels and grayscale, unique textural and structural information specific to each channel is analyzed. The Hermite transform captures localized spatial features, while the Radial Fourier–Mellin and Hilbert transforms ensure global invariance to scale, translation, and rotation. Texture information for each channel is also obtained based on the Local Binary Pattern (LBP) technique. We applied our hybrid transform-based feature extraction approach to multiple lesion classes using the International Skin Imaging Collaboration (ISIC) 2019 dataset, preprocessed with data augmentation. Experimental results demonstrate that the proposed method improves classification accuracy and robustness, highlighting its potential as a non-invasive AI-based tool for dermatological diagnosis.

Article activity feed