Open-Source Photosynthetically Active Radiation Sensor for Enhanced Agricultural and Agrivoltaics Monitoring

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Photosynthetically active radiation (PAR) is crucial for plant growth, influencing photosynthesis efficiency and crop yield. The increasing adoption of controlled-environment agriculture (CEA) necessitates precise PAR monitoring. The high cost of commercial PAR sensors, however, limits their accessibility and widespread use, creating a growing need for a low-cost alternative capable of reliable deployment in diverse agricultural environments. Building on recent advancements in PAR sensing using multi-channel spectral sensors such as the AS7341 and AS7265, this study develops the electronics for an AS7341-based, open-source, cost-effective (~USD 50) PAR sensor validated across a broad PPFD range and conditions, ensuring reliability and ease of replication. It uses a relatively simple multi-linear regression that offers real-time applications without energy intensive machine learning. The developed sensor is calibrated against the industry-standard Apogee SQ-500SS PAR sensor in four distinct farming environments: (i) horizontal grow lights, (ii) vertical agrotunnel lighting, (iii) agrivoltaics, and (iv) in greenhouses. A mean error ranging from 1 to 5% indicates its suitability for controlled environment farming and continuous data logging. The open-source hardware design and systematic installation guidelines enable users to replicate, calibrate, and integrate the sensor with minimal background in electronics and optics.

Article activity feed