Integrative Computational Modeling of Distinct Binding Mechanisms for Broadly Neutralizing Antibodies Targeting SARS-CoV-2 Spike Omicron Variants: Balance of Evolutionary and Dynamic Adaptability in Shaping Molecular Determinants of Immune Escape

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Evolution of SARS-CoV-2 has led to the emergence of variants with increased immune evasion capabilities, posing significant challenges to antibody-based therapeutics and vaccines. The cross-neutralization activity of antibodies against Omicron variants is governed by a complex and delicate interplay of multiple energetic factors and interaction contributions. In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies—S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dy-namics (MD) simulations, mutational scanning, and MM-GBSA binding free energy calculations, we elucidated the structural, energetic, and dynamic determinants of antibody binding. Our findings reveal distinct dynamic binding mechanisms and evolutionary adaptation driving broad neutralization effect of these antibodies. We show that S309 targets conserved residues near the ACE2 interface, leveraging synergistic van der Waals and electrostatic interactions, while S304 focuses on fewer but sensitive residues, making it more susceptible to escape mutations. The analysis of CYFN-1006.1 and CYFN-1006.2 antibody binding highlights broad epitope coverage with critical anchors at T345, K440, and T346, enhancing its efficacy against variants carrying the K356T mutation which caused escape from S309 binding. Our analysis of broadly potent VIR-7229 antibody binding to XBB.1.5 and EG.5 Omicron variants emphasized a large and structurally complex epitope, demonstrating certain adaptability and compensatory effects to F456L and L455S mutations. Mutational profiling identified key residues crucial for antibody binding, including T345, P337, and R346 for S309, and T385 and K386 for S304, underscoring their roles as evolutionary "weak spots" that balance viral fitness and immune evasion. The results of this energetic analysis demonstrate a good agreement between the predicted binding hotspots and critical mutations with respect to the latest experiments on average antibody escape scores. The results of this study dissect distinct energetic mechanisms of binding and importance of targeting conserved residues and diverse epitopes to counteract viral resistance. Broad-spectrum antibodies CYFN1006 and VIR-7229, which maintain efficacy across multiple variants achieve neutralization by targeting convergent evolution hotspots while enabling tolerance to muta-tions in these positions through structural adaptability and compensatory interactions at the binding interface. The results of this study underscore the diversity of binding mechanisms employed by different antibodies and molecular basis for high affinity and excellent neutraliza-tion activity of the latest generation of antibodies.

Article activity feed