SEMA-YOLO: Lightweight Small Object Detection in Remote Sensing Image via Shallow-layer Enhancement and Multi-scale Adaptation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Small object detection remains a challenge in remote sensing field due to feature loss during downsampling and interference from complex backgrounds. A novel network, termed SEMA-YOLO, is proposed in this paper as an enhanced YOLOv11-based framework incorporating three technical advancements. By fundamentally reducing information loss and incorporating a cross-scale feature fusion mechanism, the proposed framework significantly enhances small object detection performance. First, the Shallow Layer Enhancement (SLE) strategy reduces backbone depth and introduces small-object detection heads, thereby increasing feature map size and improving small object detection performance. Then, the Global Context Pooling-enhanced Adaptively Spatial Feature Fusion (GCP-ASFF) architecture is designed to optimize cross-scale feature interaction across four detection heads. Finally, the RFA-C3k2 module, which integrates Receptive Field Adaptation (RFA) with the C3k2 structure, is introduced to achieve more refined feature extraction. SEMA-YOLO demonstrates significant advantages in complex urban environments and dense target areas, while its generalization capability meets the detection requirements across diverse scenarios. Experimental results show that SEMA-YOLO achieves mAP50 scores of 72.5% on the RS-STOD dataset and 61.5% on the AI-TOD dataset, surpassing state-of-the-art models.

Article activity feed