Spatio-Temporal Variations in Grassland Carrying Capacity Derived from Remote Sensing NPP in Mongolia

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The escalation in the population of livestock coupled with inadequate precipitation has caused a reduction in pasture biomass, thereby resulting in diminished grassland carrying capacity (GCC) and pasture degradation. In this research, net primary productivity (NPP) data, sourced from the Global Land Surface Satellite (GLASS) and Moderate Resolution Imaging Spectroradiometer (MODIS) datasets from 1982 to 2020, were initially transformed into aboveground biomass (AGB) estimates. These estimates were subsequently utilized to evaluate and assess the long-term trends of GCC across Mongolia. The MODIS data indicated an upward trend in AGB from 2000 to 2020, whereas the GLASS data reflected a downward trend from 1982 to 2018. Between 1982 and 2020, climatic analysis uncovered robust positive correlations between AGB and precipitation (R > 0.80) and negative correlations with temperature (R < −0.60). These climatic alterations have led to a reduction in AGB, further impairing the regenerative capacity of grasslands. Concurrently, livestock numbers have generally increased since 1982, with a decrease in certain years due to dzud and summer drought, leading to the increase in the GCC. GCC assessment found that 37.5% of grasslands experienced severe overgrazing and 31.9–40.7% was within sustainable limits. Spatially, the eastern region of Mongolia could sustainably support current livestock numbers; the western and southern regions, as well as parts of northern Mongolia, have exhibited moderate to critical levels of grassland utilization. A detailed analysis of GCC dynamics and its climatic impacts would offer scientific support for policymakers in managing grasslands in the Mongolian Plateau.

Article activity feed