p-adic Heisenberg-Robertson-Schrodinger and p-adic Maccone-Pati Uncertainty Principles
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Let $\mathcal{X}$ be a p-adic Hilbert space. Let $A: \mathcal{D}(A)\subseteq \mathcal{X}\to \mathcal{X}$ and $B: \mathcal{D}(B)\subseteq \mathcal{X}\to \mathcal{X}$ be possibly unbounded linear operators. For $x \in \mathcal{D}(A)$ with $\langle x, x \rangle =1$, define $ \Delta _x(A):= \|Ax- \langle Ax, x \rangle x \|.$ Then for all $x \in \mathcal{D}(AB)\cap \mathcal{D}(BA)$ with $\langle x, x \rangle =1$, we show that \begin{align*} (1) \quad \quad \quad \max\{\Delta_x(A), \Delta_x(B)\}\geq \frac{\sqrt{\bigg|\big\langle [A,B]x, x \big\rangle ^2+\big(\langle \{A,B\}x, x \rangle -2\langle Ax, x \rangle\langle Bx, x \rangle\big)^2\bigg|}}{\sqrt{|2|}} \end{align*} and \begin{align*} (2) \quad \quad \quad \max\{\Delta_x(A), \Delta_x(B)\} \geq |\langle (A+B)x, y \rangle |, \quad \forall y \in \mathcal{X} \text{ satisfying } \|y\|\leq 1, \langle x, y \rangle =0. \end{align*} We call Inequality (1) as p-adic Heisenberg-Robertson-Schrodinger uncertainty principle and Inequality (2) as p-adic Maccone-Pati uncertainty principle.