Spatial Heterogeneity of Drop Size Distribution and its Implications for the Z-R Relationship in Mexico City
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The evaluation of raindrop-size distribution (DSD) is a crucial subject in radar meteorology, as it determines the relationship between radar reflectivity (Z) and rainfall rate (R). The coefficients (a and b) of the Z-R relationship vary significantly due to several factors (e.g., climate and rainfall intensity), rendering the characterisation of local DSD essential for improving radar quantitative precipitation estimation. This study used a unique network of 21 disdrometers with high spatio-temporal resolution in Mexico City to investigate changes in the local drop size distribution (DSD) resulting from seasonal fluctuations, rain rates, and topographical regions (flat urban, and mountainous). The results indicate that the DSD modelling utilizing the normalized gamma distribution provides an adequate fit in Mexico City, regardless of geographical location and season. Regional variation in DSD's slope, shape, and parameters was detected in flat urban and mountainous areas, indicating that distinct precipitation mechanisms govern rainfall in each season. Severe rain intensities (R > 20 mm/h) exhibited a more uniform and flatter DSD shape, accompanied by increased dispersion of DSD parameter values among disdrometer locations, particularly for intensities exceeding R > 60 mm/h. The coefficients a and b of the Z-R relationship, exhibit significant geographic variability, dependent on the city's topographic gradient, underscoring the necessity for regionalisation of both coefficients within the metropolis.