The Physico-Mechanical, Mineralogical, and Thermal Characterization of Geopolymeric Laterite Bricks Containing Polyethylene Terephthalate Bottle Powder

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Compressed earth blocks (CEBs) obtained by laterite material geopolymerization have great potential as building materials; however, plastic waste recycling remains an important challenge for the 21st century. Samples of lateritic materials (LAT) from the locality of Kompina and its surroundings (Littoral-Cameroon) were collected, given the region’s association with polyethylene terephthalate powder (P). They were used to make geopolymeric laterite bricks using a phosphoric acid solution (A) concentrated at 10 mol/L, at a fixed value of 20% phosphoric acid, and values of 0, 5, 10, 15, and 20% polyethylene terephthalate (PET) powder. To assess the suitability of these formulations for construction, the CEBs were tested and their physico-mechanical and thermal characteristics determined, including water absorption rate, compressive strength (CS), thermal conductivity, and effusivity. It was revealed that water absorption decreased for the LAT1 and LAT6 formulas, at 6.73% and 5.01%, respectively, with the lowest value being recorded when 10% of the PET powder was used. The water absorption increased beyond this percentage; the CS values did too, with a peak at 10% PET powder, reaching 6.92 MPa and 6.96 MPa for LAT1 and LAT6, respectively, and values decreasing beyond this point. The thermal conductivity and effusivity decreased, with the lowest values at 20% of the PET powder being 0.289 W·m−1·K−1 and 1078.46 J·K−1·m−2·s−1/2, and 0.289 W·m−1·K−1 and 1078.2 J·K−1·m−2·s−1/2 for LAT1 and LAT6, respectively. Based on the results obtained, we conclude that the formulation LAT-P10A20 is the most recommendable.

Article activity feed