Elaboration of Simulated Hyperspectral Calibration Reference over Pseudo Invariant Calibration Reference
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Accurate hyperspectral simulations are critical for the vicarious calibration of next-generation space-based sensors and for ensuring the long-term consistency of climate data records. This study presents a refined methodology to generate simulated radiometric calibration references (RCRs) over bright desert pseudo-invariant calibration sites (PICS), specifically designed to meet the stringent accuracy requirements of hyperspectral observations. Building on metrology principles, and in the absence of SI-traceable references, the approach leverages simulated reflectance over stable desert targets as a community-accepted calibration reference. Key advancements include improved surface reflectance modelling using the RPV model and CISAR algorithm, enhanced atmospheric property characterization from multiple state-of-the-art datasets, and the use of the Eradiate Monte Carlo-based radiative transfer model. These refinements reduce uncertainty in simulated top-of-atmosphere reflectance, achieving an accuracy within ±3% in high-transmittance spectral regions. Validation against both multispectral and hyperspectral satellite data (i.e., EMIT, EnMAP and PRISMA) confirms the robustness of the methodology. This work establishes a reliable framework for hyperspectral sensor calibration and intercalibration, addressing the pressing need for traceable, high-fidelity reference data in Earth observation.