Analytical and Geometric Foundations and Modern Applications of Kinetic Equations and Optimal Transport

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We develop a unified analytical framework that systematically connects kinetic theory, optimal transport, and entropy dissipation through the novel integration of hypocoercivity methods with geometric structures. Building upon but distinctly extending classical hypocoercivity approaches, we demonstrate how geometric control, via commutators and curvature-like structures in probability spaces, resolves degeneracies inherent in kinetic operators. Centered around the Boltzmann and Fokker–Planck equations, we derive sharp exponential convergence estimates under minimal regularity assumptions, improving on prior methods by incorporating Wasserstein gradient flow techniques. Our framework is further applied to the study of hydrodynamic limits, collisional relaxation in magnetized plasmas, the Vlasov–Poisson system, and modern data-driven algorithms, highlighting the central role of entropy as both a physical and variational tool across disciplines. By bridging entropy dissipation, optimal transport, and geometric analysis, our work offers a new perspective on stability, convergence, and structure in high-dimensional kinetic models and applications.

Article activity feed