Design, Characterization, and Preparation of New Smart Photoactive Polymers and Their Capacity for Photodynamic Antimicrobial Action in Organic Film

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This work focuses on the design of polymeric systems that utilize hydrophilic polymers, with the primary aim of adapting these materials for biological applications. The study further evaluates the effectiveness of photoactive polymers in photodynamic therapy (PDT). It details the synthesis and characterization of photoactive copolymers derived from maleic anhydride (MAn) combined with vinyl monomers such as 2-methyl-2-butene (MB) and 1-octadecene (OD), as well as the organic compound 1-(2-hydroxyethyl)-3,3-dimethylindoline-6-nitrobenzopyran (SP). The two novel optically active alternating polymeric systems, poly(maleic anhydride-alt-octadecene) and poly(maleic anhydride-alt-2-methyl-2-butene), were functionalized with SP through an esterification process in a 1:1 monomer feed ratio, using pyridine as a catalyst. This methodology incorporated approximately 100% of the photoactive molecules into the main acrylic chain to prepare the alternating copolymers. These copolymers were characterized by UV-visible, FTIR, and 1H-NMR spectroscopy and optical and thermal properties. When exposed to UV light, the photoactive polymer films can develop a deep blue color (566 nm in the absorption spectra). Finally, the study also assesses their capacity for photodynamic antimicrobial action in organic film. Notably, the photoactive P(MAn-alt-2MB)-PS significantly enhances the photodynamic antimicrobial activity of the photosensitizer Ru(bpy) against two bacterial strains, reducing the minimum inhibitory concentration (MIC) from 2 µg/mL to 0.5 µg/mL. Therefore, 4 times less photosensitizer is required when mixed with the photoactive polymer to inhibit the growth of antibiotic-sensitive and resistant bacteria.

Article activity feed