Multimodal Fall Detection Using Spatial-Temporal Attention and Bi-LSTM Based Feature Fusion
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Human fall detection is a significant healthcare concern, particularly among the elderly, due to its links to muscle weakness, cardiovascular issues, and locomotive syndrome. Accurate fall detection is crucial for timely intervention and injury prevention, which has led many researchers to work on developing effective detection systems. However, existing unimodal systems that rely solely on skeleton or sensor data face challenges such as poor robustness, computational inefficiency, and sensitivity to environmental conditions. While some multimodal approaches have been proposed, they often struggle to capture long-range dependencies effectively. In order to address these challenges, we propose a multimodal fall detection framework that integrates skeleton and sensor data. The system uses a Graph-based Spatial-Temporal Convolutional and Attention Neural Network (GSTCAN) to capture spatial and temporal relationships from skeleton data in the stream-1, while a Bi-LSTM with Channel Attention (CA) processes sensor data in the stream-2 extracting both spatial and temporal features. The GSTCAN model uses AlphaPose for skeleton extraction, calculates motion between consecutive frames, and applies a graph convolutional network (GCN) with a CA mechanism to focus on relevant features while suppressing noise. In parallel, the Bi-LSTM with CA processes inertial signals, with Bi-LSTM capturing long-range temporal dependencies and CA refining feature representations. The features from both branches are fused and passed through a fully connected layer for classification, providing a comprehensive understanding of human motion. The proposed system was evaluated on the Fall Up dataset, achieving a classification accuracy of 99.09%, surpassing existing methods. This robust and efficient system demonstrates strong potential for accurate fall detection and continuous healthcare monitoring.