Survival of Lactobacillus rhamnosus GG in Chitosan-Coated Alginate Beads: Effects of Food Matrices (Casein, Corn Starch, and Soybean Oil) and Dynamic Gastrointestinal Conditions
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Probiotics like Lactobacillus rhamnosus GG (LRGG) offer health benefits but face reduced viability under harsh gastrointestinal (GI) conditions. Encapsulation improves stability, yet most studies rely on static GI models with a simplified environment that may overestimate survival. This study assessed LRGG survival using chitosan-coated alginate beads under both static and dynamic GI models, including peristaltic flow and continuous juice replenishment. Food matrices (casein, corn starch, and soybean oil) were tested in static models. Beads were prepared via extrusion and subjected to simulated gastric and intestinal digestion. After 2 and 4 h of digestion, casein preserved LRGG viability at 8.50 ± 0.11 Log CFU/g, compared to 5.81 ± 0.44 with starch and undetectable levels with soybean oil. Casein’s protective effect was attributed to its pH-buffering capacity, raising gastric pH from 2.5 to 4.6. Starch offered moderate protection, while soybean oil led to bead dissolution due to destabilization of the egg-box structure. Dynamic GI models showed greater reductions in LRGG viability than static models, emphasizing the need for physiologically relevant simulations. The results highlight the importance of selecting appropriate food matrices and digestion models for accurate probiotic assessment, supporting improved encapsulation strategies in functional food development.