Customer Churn Prediction: A Systematic Review of Recent Advances, Trends, and Challenges in Machine Learning and Deep Learning

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Customer churn significantly impacts business revenues. Machine Learning (ML) and Deep Learning (DL) methods are increasingly adopted to predict churn, yet a systematic synthesis of recent advancements is lacking. Objectives: This systematic review evaluates ML and DL approaches for churn prediction, identifying trends, challenges, and research gaps from 2020 to 2024. Data Sources: Six databases (Springer, IEEE, Elsevier, MDPI, ACM, Wiley) were searched via Lens.org for studies published between January 2020 and December 2024. Study Eligibility Criteria: Peer-reviewed original studies applying ML/DL techniques for churn prediction were included. Reviews, preprints, and non-peer-reviewed works were excluded. Methods: Screening followed PRISMA 2020 guidelines. A two-phase strategy identified 240 studies for bibliometric analysis and 61 for detailed qualitative synthesis. Results: Ensemble methods (e.g., XGBoost, LightGBM) remain dominant in ML, while DL approaches (e.g., LSTM, CNN) are increasingly applied to complex data. Challenges include class imbalance, interpretability, concept drift, and limited use of profit-oriented metrics. Explainable AI and adaptive learning show potential but limited real-world adoption. Limitations: No formal risk of bias or certainty assessments were conducted. Study heterogeneity prevented meta-analysis. Conclusions: ML and DL methods have matured as key tools for churn prediction, yet gaps remain in interpretability, real-world deployment, and business-aligned evaluation. Systematic Review Registration: Registered retrospectively in OSF.

Article activity feed