Role of Ischemia/Reperfusion and Oxidative Stress in Shock State

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Shock is a life-threatening condition characterized by inadequate tissue perfusion, leading to systemic hypoxia and metabolic failure. Ischemia-reperfusion (I/R) injury exacerbates shock progression through oxidative stress and immune dysregulation, contributing to multi-organ dysfunction. This narrative review synthesizes current evidence on the interplay between I/R injury, oxidative stress, and immune modulation in shock states. We analyze the classification of shock, its progression, and the molecular pathways involved in ischemic adaptation, inflammatory responses, and oxidative injury. Shock pathophysiology is driven by systemic ischemia, triggering adaptive responses such as hypoxia-inducible factor (HIF) signaling and metabolic reprogramming. However, prolonged hypoxia leads to mitochondrial dysfunction, increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) production, and immune activation. The transition from systemic inflammatory response syndrome (SIRS) to compensatory anti-inflammatory response syndrome (CARS) contributes to immune imbalance, further aggravating tissue damage. Dysregulated immune checkpoint pathways, including CTLA-4 and PD-1, fail to suppress excessive inflammation, exacerbating oxidative injury and immune exhaustion. The intricate relationship between oxidative stress, ischemia-reperfusion injury, and immune dysregulation in shock states highlights potential therapeutic targets. Strategies aimed at modulating redox homeostasis, controlling immune responses, and mitigating I/R damage may improve patient outcomes. Future research should focus on novel interventions that restore immune balance while preventing excessive oxidative injury.

Article activity feed