Comparative Evaluation of Corrosion Resistance of AISI 316L and Ti6Al4V Dental Materials Under Simulated Inflammatory Conditions

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Titanium and its alloys, as well as stainless steel, are commonly used materials for implants in the human body due to their excellent biocompatibility, corrosion resistance, and mechanical properties. However, the long-term performance of these materials in the oral cavity can be affected by the complex oral environment, including the ingestion of food, beverages, and oral hygiene products, leading to the presence of various ions, pH fluctuations, and inflammatory processes. In this study, the corrosion properties of two biocompatible materials, Ti6Al4V and AISI 316L stainless steel, are investigated under varying oral inflammatory conditions. Using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), SEM, and EDS analysis, the corrosion behaviour of both materials was analysed in environments simulating mild and severe inflammation. Results indicate that Ti6Al4V exhibits superior corrosion resistance at low H2O2 concentrations mimicking mild inflammation, with significantly lower corrosion rates compared to AISI 316L. However, at higher H2O2 concentrations, which correspond to severe inflammation, AISI 316L shows better resistance despite its susceptibility to pitting corrosion. Both alloys show reduced passivation after 72 h, with corrosion products accumulating on the surface after 96 h, contributing to repassivation. These results emphasise the need for individualized material selection in dental applications based on a patient’s susceptibility to oral inflammation.

Article activity feed