A Modularity-Enhanced Echo State Network for Nonlinear Wind Energy Predicting
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
With the rapid growth of wind power generation, accurate wind energy prediction has emerged as a critical challenge, particularly due to the highly nonlinear nature of wind speed data. This paper proposes a modularized Echo State Network (MESN) model to improve wind energy forecasting. To enhance generalization, the wind speed data is first decomposed into time series components, and Modes-cluster is employed to extract trend patterns and pre-train the ESN output layer. Furthermore, Turbines-cluster groups wind turbines based on their wind speed and energy characteristics, enabling turbines within the same category to share the ESN output matrix for prediction. An output integration module is then introduced to aggregate the predicted results, while the modular design ensures efficient task allocation across different modules. Comparative experiments with other neural network models demonstrate the effectiveness of the proposed approach, showing that the statistical RMSE of parameter error is reduced by an average factor of 2.08 compared to traditional neural network models.