A Survey on Privacy Preservation Techniques in IoT Systems

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The Internet of Things (IoT) has become deeply embedded in modern society, enabling applications across smart homes, healthcare, industrial automation, and environmental monitoring. However, as billions of interconnected devices continuously collect and exchange sensitive data, privacy and security concerns have escalated. This survey systematically reviews the state-of-the-art privacy-preserving techniques in IoT systems, emphasizing approaches that protect user data during collection, transmission, and storage. Peer-reviewed studies from 2016 to 2025 and technical reports were analyzed to examine applied mechanisms, datasets, and analytical models. Our analysis shows that blockchain and federated learning are the most prevalent decentralized privacy-preserving methods, while homomorphic encryption and differential privacy have recently gained traction for lightweight and edge-based IoT implementations. Despite these advancements, challenges persist, including computational overhead, limited scalability, and real-time performance constraints in resource-constrained devices. Furthermore, gaps remain in cross-domain interoperability, energy-efficient cryptographic designs, and privacy solutions for Unmanned Aerial Vehicle (UAV) and vehicular IoT systems. This survey offers a comprehensive overview of current research trends, identifies critical limitations, and outlines promising future directions to guide the design of secure and privacy-aware IoT architectures.

Article activity feed