Enhancing Deforestation Detection Through Multi-Domain Adaptation with Uncertainty Estimation
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Deep learning models have shown great potential in scientific research, particularly in remote sensing for monitoring natural resources, environmental changes, land cover, and land use. Deep semantic segmentation techniques enable land cover classification, change detection, object identification, and vegetation health assessment, among other applications. However, their effectiveness relies on large labeled datasets, which are costly and time-consuming to obtain. Domain adaptation (DA) techniques address this challenge by transferring knowledge from a labeled source domain to one or more unlabeled target domains. While most DA research focuses on single-target single-source problems, multi-target and multi-source scenarios remain underexplored. This work proposes a deep learning approach that uses Domain Adversarial Neural Networks (DANNs) for deforestation detection in multi-domain settings. Additionally, an uncertainty estimation phase is introduced to guide human review in high-uncertainty areas. Our approach is evaluated on a set of Landsat-8 images from the Amazon and Brazilian Cerrado biomes. In the multi-target experiments, a single source domain contains labeled data, while samples from the target domains are unlabeled. In multi-source scenarios, labeled samples from multiple source domains are used to train the deep learning models, later evaluated on a single target domain. The results show significant accuracy improvements over lower-bound baselines, as indicated by F1-Score values, and the uncertainty-based review showed a further potential to enhance performance, reaching upper-bound baselines in certain domain combinations. As our approach is independent of the semantic segmentation network architecture, we believe it opens new perspectives for improving the generalization capacity of deep learning-based deforestation detection methods. Furthermore, from an operational point of view, it has the potential to enable deforestation detection in areas around the world that lack accurate reference data to adequately train deep learning models for the task.