A Microsphere-Based Sensor for Point-of-Care and Non-Invasive Acetone Detection

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Ketones, which are key biomarkers of fat oxidation, are relevant for metabolic health maintenance and disease development, making continuous monitoring essential. In this study, we introduce a novel colorimetric sensor designed for potential continuous acetone detection in biological fluids. The sensor features a polydimethylsiloxane (PDMS) shell that encapsulates a sensitive and specific liquid-core acetone-sensing probe. The microsphere sensors were characterized by evaluating their size, PDMS shell thickness, colorimetric response, and sensitivity under realistic conditions, including 100% relative humidity (RH) and CO2 interference. The microsphere size and sensor sensitivity can be controlled by modifying the fabrication parameters. Critically, the sensor showed high selectivity for acetone detection, with negligible interference from CO2 concentrations up to 4%. In addition, the sensor displayed good reproducibility (CV < 5%) and stability under realistic storage conditions (over two weeks at 4 °C). Finally, the accuracy of the microsphere sensor was validated against a gold standard gas chromatography-mass spectrometry (GC-MS) method using simulated and real breath samples from healthy individuals and type 1 diabetes patients. The correlation between the microsphere sensor and GC-MS produced a linear fit with a slope of 0.948 and an adjusted R-squared value of 0.954. Therefore, the liquid-core microsphere-based sensor is a promising platform for acetone body fluid analysis.

Article activity feed