Development of a Force Feedback Controller with a Speed Feedforward Compensator for a Cable-Driven Actuator
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cable-driven actuators (CDAs) are extensively used in the rehabilitation field because of advantages such as low moment of inertia, fast movement response, and intrinsic flexibility. Accurate control of cable force is essential for achieving precise movement control, especially when the movement is generated by multiple CDAs. However, velocity-induced disturbances pose challenges to accurate force control during dynamic movements. Several strategies for direct force control have been investigated in the literature, but time-consuming tests are often required. The aim of this study was to develop a force feedback controller and a speed feedforward compensator for a CDA with a convenient experiment-based approach. The CDA consisted of a motor with a gearbox, a cable drum, and a force sensor. The transfer function between motor torque and cable force was estimated through an open-loop test. A PI force feedback controller was developed and evaluated in a static test. Subsequently, a dynamic test with a reference force of 100 N was conducted, during which the cable was pulled to move at different speeds. The relationship between the motor speed and the cable force was determined, which facilitated further development of a speed feedforward compensator. The controller and compensator were evaluated in dynamic tests at various speeds. Additionally, the system dynamics were simulated in MATLAB/Simulink. The static test showed that the PI force controller produced a mean force control error of 4.7 N, which was deemed very good force-tracking accuracy. The simulated force output was very similar to the experiment (RMSE error of 4.0 N). During the dynamic test, the PI force controller alone produced a force control error of 9.0 N. Inclusion of the speed feedforward compensator improved the force control accuracy, resulting in a mean error at various speeds of 5.6 N. The combined force feedback controller and speed feedforward compensator produced a satisfactory degree of accuracy in force control during dynamic tests of the CDA across varying speeds. Additionally, the accuracy level was comparable to that reported in the literature. The convenient experiment-based design of the force control strategy exhibits potential as a general control approach for CDAs, laying the solid foundation for precise movement control. Future work will include the integration of the speed compensator into better feedback algorithms for more accurate force control.