Kinetic Modeling of the Methanol-Assisted Autocatalytic Methanol Synthesis on Cu/ZnO/Al<sub>2</sub>O<sub>3</sub>

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Methanol is of rising interest as a potential hydrogen storage molecule and chemical building block producible from green hydrogen and captured carbon dioxide. Although the reaction kinetics have been studied for decades and numerous models are available, new recent insights reveal that a so far not quantitatively considered autocatalytic reaction pathway is of large relevance in heterogeneously catalyzed methanol synthesis over Cu/ZnO/Al2O3 catalysts. Inspired by these recent reports, an extended kinetic model was derived and parameterized exploiting the same data base used to parameterize earlier derived models. Thus, we provide the first model for quantifying the kinetics of the heterogeneously catalyzed methanol synthesis from CO/CO2/H2 which includes a methanol-assisted autocatalytic reaction pathway. Various reduced model variants were derived from the suggested model. A comparison with these reduced models and also with recalibrated further literature models reveals that the incorporation of the autocatalytic reaction pathway is beneficial. This finding encourages further assessment and validation considering a broader data base.

Article activity feed