Theoretical Kinetic Study of Thermal Decomposition of 5-Methyl-2-Ethylfuran
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
With the advancement of new synthetic techniques, 5-Methyl-2-ethylfuran (5-MEF) has emerged as a promising renewable biofuel. In this study, the potential energy surfaces for the unimolecular dissociation reaction, H-addition reaction, and H-abstraction reaction of 5-MEF were mapped at the CBS-QB3 level. The temperature- and pressure-dependent rate constants for these reactions on the potential energy surfaces were determined by solving the master equation, using both transition state theory and Rice-Ramsperger-Kassel-Marcus theory. The results showed that the dissociation reaction of the C(6) site on the branched chain of 5-MEF has the largest rate constant and is the main decomposition pathway, while the dissociation reaction of the H atom on the furan ring has a lower rate constant and is not the main reaction pathway. In addition, the dissociation of H atoms on the branched chain and intramolecular H-transfer reactions also have high-rate constants and play an important role in the decomposition of 5-MEF. H-addition reactions mainly occur at the C(2) and C(5) sites, and the generation of the corresponding products through β-breakage becomes the main reaction pathway. With the increase of temperature, the H-addition reaction at the C(2) site gradually changes to a substitution reaction, dominating the formation of C₂H₅ and 2-methylfuran.