High-Frequency Passive Acoustic Recognition in Underwater Environments: Echo-Based Coding for Layered Elastic Shells
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Addressing the limitations of restricted coding capacity and material dependency in acoustic identity tags for autonomous underwater vehicles (AUVs), this study introduces a novel passive acoustic identification tag (AID) design based on multilayered elastic cylindrical shells. By developing a Normal Mode Series (NMS) analytical model and validating it through finite element method (FEM) simulations, the work elucidates how material layering strategies regulate far-field target strength (TS) and establishes a time-domain multi-peak echo-based encoding framework. Results demonstrate that optimizing material impedance contrasts achieves 99% detection success at a 3 dB signal-to-noise ratio. Jaccard similarity analysis of 3570 material combinations reveals a system-wide average recognition error rate of 0.41%, confirming robust encoding reliability. The solution enables the combinatorial expansion of coding capacity with structural layers, yielding 210, 840, and 2520 unique codes for three-, four-, and five-layer configurations, respectively. These findings validate a scalable, hull-integrated acoustic identification system that overcomes material constraints while providing high-capacity encoding for compact AUVs, significantly advancing underwater acoustic tagging technologies through physics-driven design and systematic performance validation.