Spectrum Sharing Design for Integrated Aeronautical Communication and Radar System
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The novel framework of an integrated aeronautical communication and radar system (IACRS) to realize spectrum sharing is investigated. A non-orthogonal multiple access (NOMA)-motivated multi-input–multi-output (MIMO) scheme is proposed for the dual-function system, which is able to detect multiple aircraft while simultaneously transmitting dedicated messages. Specifically, NOMA-inspired technology is utilized to enable dual-spectrum sharing. The superposition of communication and radar signals is facilitated in the power domain. Successive interference cancellation (SIC) is employed at the receiver to effectively mitigate inter-function interference. Subsequently, the regularity of the three-dimensional flight track and attitude is exploited to model the air-to-ground (A2G) MIMO channel. Based on this framework, a joint optimization problem is formulated to maximize the weighted achievable sum rate and the sensing signal–clutter–noise ratio (SCNR) while satisfying the rate requirements for message transmission and ensuring the radar detection threshold. An alternative optimization (AO) algorithm is proposed to solve the non-convex problem with highly coupled variables. The original problem is decoupled into two manageable subproblems: transmit beamforming of the ground base station combined with power allocation and receiver beamforming at the aircraft. The penalty-based approach and the successive rank-one constraint relaxation (SROCR) method are developed for iteratively handling the non-convex rank-one constraints in subproblems. Numerical simulations demonstrate that the proposed IACRS framework significantly outperforms benchmark schemes.