Dual Mutations in MSMEG_0965 and MSMEG_1380 Confer High-Level Resistance to Bortezomib and Linezolid by Both Reducing Drug Intake and Increasing Efflux in Mycobacterium smegmatis

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The emergence of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains poses serious challenges to global tuberculosis control, highlighting the urgent need to elucidate the mechanisms underlying multidrug resistance. In this study, we screened for spontaneous bortezomib (BTZ)-resistant Mycobacterium smegmatis (Msm) mutants and identified a strain, Msm-R1-2, exhibiting 16- and 64-fold increases in minimum inhibitory concentrations (MICs) to BTZ and linezolid (LZD), respectively, compared to the parental strain. Whole-genome sequencing revealed resistance-associated mutations in two functionally distinct genes: MSMEG_1380, encoding a transcriptional regulator involved in efflux pump expression, and MSMEG_0965, encoding a porin protein. CRISPR-Cpf1-assisted gene knockout and editing experiments confirmed that single mutations in either MSMEG_1380 or MSMEG_0965 caused low-level resistance (4-fold MIC increase) to BTZ and LZD, while dual mutations conferred resistance levels comparable to Msm-R1-2, with 16- and 64-fold increases in MICs for BTZ and LZD, respectively. An ethidium bromide accumulation assay demonstrated that mutations in MSMEG_0965 reduce cell wall permeability, contributing to multidrug resistance. Furthermore, quantitative real-time PCR showed that mutations in MSMEG_1380 upregulate the mmpS5-mmpL5 efflux system. Together, these dual mechanisms function synergistically: restricted drug entry combined with enhanced drug efflux confers robust multidrug resistance. These findings provide novel insights into the evolutionary mechanisms of resistance in mycobacteria.

Article activity feed