Effect of Acetic Acid on Morphology, Structure, Optical Properties, and Photocatalytic Activity of TiO2 Obtained by Sol–Gel
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Titanium oxide (TiO2) is of great interest in solar cell manufacturing, hydrogen production, and organic compound photodegradation. The synthesis variables and methodology affect the morphology, texture, crystalline structure, and phase mixtures of TiO2, which, in turn, affect the optical and catalytic properties of TiO2. In this work, the effect of acetic acid as a catalyst and chelating agent on the morphology, texture, crystal structure, optical properties, and photocatalytic activity of TiO2 samples obtained using the sol–gel method with sodium dodecyl sulfate (SDS) as a template was investigated. The results indicated that acetic acid not only catalyzes the hydrolysis of the TiO2 precursor but also acts as a chelating agent, causing a decrease in crystallite size from 18.643 nm (T7 sample, pH = 6.8, without addition of acetic acid) to 16.536 nm (T2 sample, pH = 2). At pH 2 and 3, only the anatase phase was formed (T2 and T3 samples), whereas at pH 5 and 6.8, in addition to the anatase phase, the brookite phase (11.4% and 15.61% for samples T5 and T7, respectively) was formed. The band-gap value of TiO2 decreased with decreasing pH during synthesis. Although the T2 sample had the highest specific surface area and pore volume (232.02 m2g−1 and 0.46 gcm−3, respectively), the T3 sample had better efficiency in methylene blue dye photodegradation because its bird-nest-like morphology improved photon absorption, promoting better photocatalytic performance.