Uncertainty-Aware δ-GLMB Filtering for Multi-Target Tracking

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The δ-GLMB filter is an analytic solution to the multi-target Bayes recursion used in multi-target tracking. It extends the Generalised Labelled Multi-Bernoulli (GLMB) framework by providing an efficient and scalable implementation while preserving track identities, making it a widely used approach in the field. Theoretically, the δ-GLMB filter handles uncertainties in measurements in its filtering procedure. However, in practice, degeneration of the measurement quality affects the performance of this filter. In this paper, we discuss the effects of increasing measurement uncertainty on the δ-GLMB filter and also propose two heuristic methods to improve the performance of the filter in such conditions. The base idea of the proposed methods is to utilise the information stored in the history of the filtering procedure, which can be used to decrease the measurement uncertainty effects on the filter. Since GLMB filters have shown good results in the field of multi-target tracking, an uncertainty-immune δ-GLMB can serve as a strong tool in this area. In this study, the results indicate that the proposed heuristic ideas can improve the performance of filtering in the presence of uncertain observations. Experimental evaluations demonstrate that the proposed methods enhance track continuity and robustness, particularly in scenarios with low detection rates and high clutter, while maintaining computational feasibility.

Article activity feed