Self-Interacting Gravitational Exciton Condensates from Extra-Dimensional Stabilization
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We present a comprehensive study of gravitational exciton dynamics arising from higher-dimensional theories, with a focus on establishing a robust effective framework that incorporates self-interactions, higher-derivative corrections, and quantum effects. Starting from a \( D \)-dimensional Einstein--Hilbert action on a warped product manifold, we perform a systematic dimensional reduction to obtain a four-dimensional effective action in the Einstein frame. Our formulation extends the classical potential by including self-interacting moduli fields and RG-improved parameters via the Coleman--Weinberg mechanism, thereby accounting for both matter and graviton loop corrections. The resulting renormalization group flow modifies the effective mass and coupling constants, which in turn plays a critical role in moduli stabilization and the low-energy phenomenology.Taking the non-relativistic limit, we derive a Gross--Pitaevskii equation that governs the dynamics of the gravitational exciton condensate, and couple it self-consistently with Poisson’s equation to capture gravitational backreaction. Through both variational and numerical analyses, we obtain stationary solutions in spherically symmetric, rotating, and anisotropic configurations, and perform a linear stability analysis using the Bogoliubov--de Gennes formalism. Our results reveal a Bogoliubov dispersion relation that exhibits a phonon-like linear regime at low momenta, transitioning to quadratic free-particle behavior at high momenta.