From Complex to Quaternions: Proof of the Riemann Hypothesis and Applications to Bose-Einstein Condensates

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We present a novel proof of the Riemann Hypothesis by extending the standard complex Riemann zeta function into a quaternionic algebraic framework. Utilizing λ-regularization, we construct a symmetrized form that ensures analytic continuation and restores critical-line reflection symmetry, a key structural property of the Riemann xi function. This formulation reveals that all nontrivial zeros of the zeta function must lie along the critical line Re(s) = 1/2, offering a constructive and algebraic resolution to this fundamental conjecture. Our method is built on convexity and symmetrical principles that generalize naturally to higher-dimensional hypercomplex spaces. We also explore the broader implications of this framework in quantum statistical physics. In particular, the λ-regularized quaternionic zeta function governs thermodynamic properties and phase transitions in Bose-Einstein condensates. This quaternionic extension of the zeta function encodes oscillatory behavior and introduces critical hypersurfaces that serve as higher-dimensional analogues of the classical critical line. By linking the spectral features of the zeta function to measurable physical phenomena, our work uncovers a profound connection between analytic number theory, hypercomplex geometry, and quantum field theory, suggesting a unified structure underlying prime distributions and quantum coherence.

Article activity feed