Sustainable Strategies to Reduce Logistics Costs Based on Cross-Docking—The Case of Emerging European Markets
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cross-docking operations in Eastern and Central European markets face increasing complexity amid persistent uncertainty and inflationary pressures. This study provides the first comprehensive comparative analysis integrating economic efficiency with sustainability indicators across strategic locations. Using mixed-methods analysis of 40 bibliographical sources and quantitative modeling of cross-docking scenarios in Bratislava, Prague, and Budapest, we integrate environmental, social, and governance frameworks with activity-based costing and artificial intelligence analysis. Optimized cross-docking achieves statistically significant cost reductions of 10.61% for Eastern and Central European inbound logistics and 3.84% for Western European outbound logistics when utilizing Budapest location (p < 0.01). Activity-based costing reveals labor (35–40%), equipment utilization (25–30%), and facility operations (20–25%) as primary cost drivers. Budapest demonstrates superior integrated performance index incorporating operational efficiency (94.2% loading efficiency), economic impact (EUR 925,000 annual savings), and environmental performance (486 tons CO2 reduction annually). This is the first empirically validated framework integrating activity-based costing–corporate social responsibility methodologies for an emerging market cross-docking, multi-dimensional performance assessment model transcending operational-sustainability dichotomy and location-specific contingency identification for emerging market implementation. Findings support targeted infrastructure investments, harmonized regulatory frameworks, and public–private partnerships for sustainable logistics development in emerging European markets, providing actionable roadmap for EUR 142,000–EUR 187,000 artificial intelligence implementation investments achieving a 14.6-month return on investment.