Matrilin-2 with a K-Chitosan Scaffold Enhances Functional Recovery and Nerve Regeneration in a Segmental Rat Sciatic Nerve Injury Model
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background/Objectives: Previous work in our lab demonstrated that a 3D scaffold containing lysine-modified chitosan (K-chitosan) and decorated with Matrilin-2 (MATN2) enhanced Schwann cell (SC) migration and axonal outgrowth in vitro and ex vivo. This study aimed to assess the regenerative effect of this scaffold compared to that of a collagen conduit and an autograft using a segmental rat sciatic nerve injury model. Methods: A total of 30 Lewis Rats were assigned into three groups: an untreated collagen conduit (UC) group, a collagen conduit treated with MATN2 K-chitosan (TC) group, and a reverse autograft (RA) group. Walking force measurements, compound muscle action potential (CMAP), the wet muscle weight of the tibialis anterior and the gastrocnemius, and axonal histomorphometry were assessed. Results: The walking force and CMAP were significantly higher in the TC group compared to those in the UC group, with no significant difference between the TC and RA groups. The muscle weights were significantly greater in the TC group compared to those in the UC group but smaller than those in the RA group. The TC group experienced significantly greater axonal regeneration compared to that with the UC, and no differences were found with the RA. The TC group further demonstrated significantly greater cell counts than those in the UC group and greater affinity of the Schwann cells towards nerve reconstruction. Conclusion: The MATN2 K-chitosan scaffold significantly improved nerve regeneration and was comparable to the RA, supporting the development of a novel bio-conductive scaffold conduit.