Quantum Control of Exciton Motion in Electric Field

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We studied the quantum control of the classical motion of a two-dimensional exciton by optimizing the time-dependent electric field of a stripe-like gate acting on the exciton and inducing its time-dependent quantum dipole moment. We propose a search method that significantly reduces computational requirements while efficiently identifying optimal control parameters. By leveraging this method, we can precisely manipulate the exciton’s final position and velocity over a specified evolution time. These results can be applied for the control of exciton fluxes and populations, and for spatially resolved light emission in two-dimensional semiconducting structures.

Article activity feed