Radiomic Profiling of Orthotopic Mouse Models of Glioblastoma Reveals Histopathological Correlations Associated with Tumour Response to Ionising Radiation
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background: Glioblastoma (GB) is a particularly malignant brain tumour which carries a poor prognosis and presents limited treatment options. MRI is standard practice for differential diagnosis at initial presentation of GB and can assist in both treatment planning and response assessment. MRI radiomics allows for discerning GB features of clinical importance that are not evident by visual analysis, augmenting the morphological and functional tumour characterisation beyond traditional imaging techniques. Given that radiotherapy is part of the standard of care for GB patients, establishing a platform for phenotyping radiation treatment responses using non-invasive methods is of high relevance. Methods: In this study, we modelled the responses to ionising radiation across four orthotopic mouse models of GB using diffusion and perfusion radiomics. We have identified the optimal set of radiomic features that reflect tumour cellularity, microvascularity, and blood flow changes brought about by radiation treatment in these murine orthotopic models of GB, and directly compared them with endpoint histopathological analysis. Results: We showed that the selected radiomic features can quantify textural information and pixel interrelationships of tumour response to radiation therapy, revealing subtle image patterns that may reflect intra-tumoural spatial heterogeneity. When compared to GB patients, similarities in selected radiomic features were noted between orthotopic murine tumours and non-enhancing central tumour areas in patients, along with several discrepancies in tumour cellularity and vascularization, denoted by distinct grey level intensities and nonuniformity metrics. Conclusion: As the field evolves, radiomic profiling of GB may enhance the evaluation of targeted therapeutic strategies, accelerate the development of new therapies, and act as a potential virtual biopsy tool.