DP-YOLO: A Lightweight Real-Time Detection Algorithm for Rail Fastener Defects

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

To enable accurate and efficient real-time detection of rail fastener defects under resource-constrained environments, we propose DP-YOLO, an advanced lightweight algorithm based on YOLOv5s with four key optimizations. First, we design a Depthwise Separable Convolution Stage Partial (DSP) module that integrates depthwise separable convolution with a CSP residual connection strategy, reducing model parameters while enhancing recognition accuracy. Second, we introduce a Position-Sensitive Channel Attention (PSCA) mechanism, which calculates spatial statistics (mean and standard deviation) across height and width dimensions for each channel feature map. These statistics are multiplied across corresponding dimensions to generate channel-specific weights, enabling dynamic feature recalibration. Third, the Neck network adopts a GhostC3 structure, which reduces redundancy through linear operations, further minimizing computational costs. Fourth, to improve multi-scale adaptability, we replace the standard loss function with Alpha-IoU, enhancing model robustness. Experiments on the augmented Roboflow Universe Fastener-defect-detection Dataset demonstrate DP-YOLO’s effectiveness: it achieves 87.1% detection accuracy, surpassing the original YOLOv5s by 1.3% in mAP0.5 and 2.1% in mAP0.5:0.95. Additionally, the optimized architecture reduces parameters by 1.3% and computational load by 15.19%. These results validate DP-YOLO’s practical value for resource-efficient, high-precision defect detection in railway maintenance systems.

Article activity feed